Categorical generalization of the binary 2x2 swap algorithm to
matrices of categorical data. This function is a convenience wrapper
around nullcat() with method = "swapcat".
Usage
swapcat(
x,
n_iter = 1000L,
output = c("category", "index"),
swaps = "auto",
seed = NULL
)Arguments
- x
A matrix of categorical data, encoded as integers. Values should represent category or stratum membership for each cell.
- n_iter
Number of iterations. Default is 1000. Larger values yield more thorough mixing. Ignored for non-sequential methods. Minimum burn-in times can be estimated with
suggest_n_iter().- output
Character indicating type of result to return:
"category"(default) returns randomized matrix"index"returns an index matrix describing where original entries (a.k.a. "tokens") moved. Useful mainly for testing, and for applications likequantize()that care about token tracking in addition to generic integer categories.
- swaps
Character string controlling the direction of token movement. Only used when method is
"curvecat","swapcat", or"tswapcat". Affects the result only whenoutput = "index", otherwise it only affects computation speed. Options include:"vertical": Tokens move between rows (stay within columns)."
horizontal": Tokens move between columns (stay within rows)."alternating": Tokens move in both dimensions, alternating between vertical and horizontal swaps. Provides full 2D mixing without preserving either row or column token sets."auto"(default): Foroutput = "category", automatically selects the fastest option based on matrix dimensions. Foroutput = "index", defaults to"alternating"for full mixing.
- seed
Integer used to seed random number generator, for reproducibility.
Value
A matrix of the same dimensions as x, either randomized
categorical values (when output = "category") or an integer index
matrix describing the permutation of entries (when output = "index").
Details
The swapcat algorithm attempts random 2x2 swaps of the form:
where \(a\) and \(b\) are distinct categories. These swaps
preserve the multiset of categories in each row and column.
With only two categories present, swapcat() reduces to the
behavior of the standard binary swap algorithm.
References
Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology, 81(9), 2606–2621.
See also Gotelli & Entsminger (2003) EcoSim: Null models software for ecology (Version 7.0) for implementation details of the binary swap algorithm.
See also
curvecat() for an algorithm that produces equivalent results with
better computational efficiency.
Examples
set.seed(123)
x <- matrix(sample(1:4, 100, replace = TRUE), nrow = 10)
# Randomize using swap algorithm
x_rand <- swapcat(x, n_iter = 1000)
# Verify fixed-fixed constraint (row and column margins preserved)
all.equal(sort(x[1, ]), sort(x_rand[1, ]))
#> [1] TRUE
all.equal(sort(x[, 1]), sort(x_rand[, 1]))
#> [1] TRUE
