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California’s 
coastal fog: 
modeled trends 
in space & time

Summertime fog strongly influences human and ecological sys-
tems in coastal California, creating a cool, moist microclimate 
buffered from the hot, dry conditions that dominate the greater 
region[1-4]. Yet data on spatial and temporal fog patterns is scarce 
in comparison to data on other climate variables, severely limiting 
consideration of fog in applications such as ecological modeling 
or climate trend analyses. 

In this study I use airport observations of fog and other climate 
variables to construct a predictive fog model, demonstrating that 
widely measured climate variables can be used to predict coast-
al fog. I then produce a gridded fog dataset with various potential 
applications, covering all of coastal California and comprising a 
time series that spans more than a century. Model evaluation in-
dicates that this approach captures the dominant spatiotemporal 
patterns of monthly fog frequency in this region.

Recent multi-decadal trends in these fog estimates suggest that 
fog frequency has increased near the coast but declined in-
land, consistent with an intensification of coastal climate buffer-
ing. This helps to address open questions about the impacts of 
climate change on coastal fog[1]. Still, significant uncertainty re-
mains, particularly in understanding fog patterns in remote areas 
and potential bias in long-term fog trends.
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[1] Fog quantification
 
Informally, fog consists of stratus clouds near ground level. Operational-
ly, I define fog as the presence of a cloud ceiling less than 400m above 
ground, a definition drawn from the literature[2]. I use this criterion to quan-
tify fog as a binary variable for hourly cloud ceiling observations from the 
Surface Airways Observations (SAO) dataset[5] for 87 airfields in California 
within 50km of the coast (red crosses in the map at far left). This dataset 
spans 1935-2016, but observations at most individual stations are far less 
extensive, limiting its utility in directly assessing long-term fog trends.

For summer months (June-September) I converted hourly fog presence 
to monthly fog frequency (percent of hours with fog) time series for each 
airport. Corresponding hourly air temperature and humidity records were 
summarized in tandem. After discarding months missing more than 5% 
of hourly observations the final model training dataset included more than 
8300 station-months, each with 6 climate variables: monthly fog frequen-
cy, monthly averages of daily minimum, mean, and maximum temperature, 
monthly mean dewpoint temperature, and monthly mean dewpoint depres-
sion. Dewpoint depression is the difference between air temperature and 
dewpoint temerature, and has strong physical ties to vapor condensation. 
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[4] Gridded predictor data quality
 
Using this model to generate wall-to-wall fog predictions requires gridded 
predictor variables. Among the most widely used is PRISM, which com-
prises monthly time series of 800m grids interpolated from weather sta-
tion data and is tailored to coastal California[6]. Uncertainty in interpolated 
PRISM data contributes to uncertainty in the maps at left. But virtually all 
publicly available weather station data is used in the creasion of PRISM[6], 
making evaluation with independent data a challenge. 

I used records from meterological stations installed in the tops of redwood 
trees by the Redwoods and Climate Change Initiative (RCCI)[7] at three re-
mote loactions (red diamonds in the map at far left) to assess the reliability 
of PRISM data far from the weather stations used to create it. This com-
parison is shown at right, with a point for each redwood weather station 
for each month from 2011-2015. Decomoposing this overall correlation into 
spatial, seasonal, and interannual components still shows strong correla-
tions in each dimension. This indicates PRISM interpolation performs well, 
but it does not address the reliability of multi-decadal trends in PRISM.

[2] Monthly fog predictability
 
Physical first principles govern how temperature, pressure, and humidity 
relate to fog at an instantaneous timescale[3]. But statistics, not physics, 
governs whether those correlations hold at the monthly timescale neces-
sary to predict fog from widely available monthly climate data sources.

Cross-validation within the airport dataset was used to evaluate the pre-
dictability of monthly summertime fog frequency from temperature and 
dewpoint. Observed fogginess for each airport-year was tested against the 
predictions of a random forest model trained on observations that had nei-
ther airport nor year in common with the testing data, minimizing false op-
timism from spatial and temporal autocorrelation. 

This validation yielded an r2 of 0.78, illustrated at right, suggesting summer 
fog frequency is largely predictable from other climate variables in coastal 
California. While this simple model captures a large majority of the spatio-
temporal variablity in fog frequency, it tends to overpredict the least foggy 
datapoints and underpredict the most foggy, indicating room for further 
model refinement. 

[5] Gridded fog frequency prediction
 
The above statistical model trained on airport observations was used to 
predict monthly fog frequency for every 800m PRISM grid cell in California 
within 50km of the coast, for each of the four summer months from 1895 to 
2015. The map at far left shows the mean of these predictions across the 
entire 484-month time series. 

[3] Predictive model fitting
 
After cross-validation, a final random forest regression model was fit using 
the entire SAO training dataset, predicting monthly fog frequency based on 
the other four climate variables. Random forests are a widely used class of 
nonparametric machine-learning algorithm, and performed better in testing 
than generalized linear regression.

The chart below shows modeled fog frequency as a function of monthly 
mean temperature and dewpoint, a 2D projection of the complete 5-di-
mensional response surface. Both variables and their interaction are cap-
tured nonparametrically in the model. All 5 predictor variables improved 
accuracy and were retained during model selection.
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[6] Model predictions at airport locations
 
I compared gridded fog frequency predictions to observed SAO fog fre-
quencies at the locations of airport weather stations. An r2 of 0.69 for this 
correlation across all station-months, depicted at right, suggests that the 
majority of spatiotemporal variablity in fog frequency is captured by the 
model. Predictive accuracy far from airports is not evaluated by this test. 

The predictive error in this relationship reflects climatic variability within 
PRISM grid cells and inaccuracy in PRISM interpolation, as well as un-
certainty in modeled fog-temperature-humidity relationships. As in the 
cross-validation analysis above, the model tended to predict less extreme 
fogginess than observed, suggesting accuracy could be further improved. 

[8] Multi-decadal trend measurement
 
For each 800m grid cell I used ordinary least squares regression to esti-
mate the trend in fog frequency across the 264 summer monthly values 
from 1950 to 2015. This timeframe was chosen to avoid higher-uncertainy 
PRISM data in the early 1900s and to emphasize trends associated with 
anthropogenic climate change. The map at left shows change in fog fre-
quency between the beginning and end of those trend lines (expressed in 
percent of total summer hours, not percent of initial fog frequency).

These results suggest that fog declines in Monterey and Aracata, which 
have been rasied as evidence of regional coastal fog declines[2], may not 
be broadly representative. Significant heterogeneity is apparent in the di-
rection and magnitude of estimated trends, with fog increasing along much 
of the coastline and decreasing farther inland. 

This pattern would signify an intensification of the coastal fog gradient, 
hinting that increasing inland temperatures (demonstrated separately from 
this study) may be intensifying coastal upwelling-driven climate buffer-
ing[1,8], increasing onshore advection of sea fog but also dissipating it more 
rapidly as it progresses inland.

[9] Evaluation of fog trends 
 
Multi-decadal trends based on PRISM data may incude non-climatic arti-
facts from changes in weather station operations. Comparing the fog fre-
quency trends presented here to trends in direct SAO fog measurements 
may help to clarify this uncertainty, although SAO trends are subject to 
similar biases since cloud ceiling measurement transitioned from eyeballed 
estimates to laser measurement during the study timeframe.

The figure at right compares the statistically significant subset of trends 
mesured directly on SAO observations to corresponding trends in grid cell 
predictions. Data were removed from the modeled time series to match 
gaps in airport observations. A clear positive correlation exists in trends 
across these station-months, suggesting that at locations with airports, 
multi-decadal fog trends roughly agree across the two datasets. However, 
error propagating from upstream stages of the modeling process means 
that bias and uncertainty in these fog trends remain difficult to quantify.
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[7] Comparison to satellite imagery
 
Beyond station-based fog observations like the SAO data used to fit this 
model, the best source of California fog data comes from satellite imagery. 
The maps at right compare the average summer fog frequency predicted in 
this analysis to a GOES-based low cloud frequency dataset[4] for northern 
and central California, each normalized to highlight relative spatial patterns. 

The dominant coastal gradient and the regions of highest and lowest fog 
frequency are clearly captured by both datasets. GOES data shows higher 
low cloud frequency overall and some differences in spatial pattern—but it 
captures a much broader vertical spectrum of stratus clouds than the nar-
row sub-400m fog category addressed in this study[4], making direct de-
tailed comparison inappropriate.
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